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Abstract. The problems of M-machine, J-product, N-time point preemptive scheduling in
parallel and serial production systems are the focus of this paper. The objective is to minimize the
sum of the costs related to inventory level and production rate along a planning horizon. Although
the problem is NP-hard, the application of the maximum principle reduces it into a well-tractable

k(N2L )11type of the two-point boundary value problem. As a result, algorithms of O(NMJ ) and
k(N2L )11O(N(MJ) ) time complexities are developed for parallel and serial production systems,

respectively, where L is the time point when the demand starts and k is the ratio of backlog cost
MNover the inventory cost. This compares favorably with the time complexity O((J 1 1) ) of a

naive enumeration algorithm.

Key words: Optimization; Production scheduling; The maximum principle

1. Introduction

So far numerous efforts have been undertaken for effective production scheduling
throughout available facilities to achieve a goal of economic and, thus, competitive
manufacturing. Unfortunately, only very special cases of the multi-machine schedul-
ing problems can be solved in polynomial time (see tectbooks like Brucker, 1995;
Lawler et al., 1993; Pinedo, 1995) while the rest is NP-hard. Therefore, the
increases in the numbers of machines and products lead to combinatorial explosion
and the problem cannot be solved for practical purposes.

Since production is a dynamic phenomenon, dynamic representation appears to be
a natural way to model it, especially when dealing with demands for product types,
which change in time, i.e., dynamic lot-sizing. While the dynamic and mixed-integer
programming approaches (Crowston and Wagner, 1973; Karmarkar et al., 1987) are
directly applicable to handle such problems, these approaches usually require
exponential computational time. On the other hand, we will show in this paper that
the optimal control theory turns out to be an efficient tool in the search for
well-solvable cases.

Kimemia and Gershwin (1983) first presented manufacturing as a continuous-time
controllable product flow that passes through workstations (where setups are
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negligible) and buffers. They described this dynamic model by differential equa-
tions. The near-optimal flow was found from the linear problem formulated at
required moments of time by varying a cost functional. Later, Sousa and Pereira
(1992), Khmelnitsky et al. (1995), Kogan et al. (1997), applied the maximum
principle to derive projected gradient-based methods for different dynamic schedul-
ing problems. These methods are characterized by the polynomial computational
time when a relatively rough accuracy is required. However, the more accurate
solution is needed the worse convergence is observed, and the computation time
becomes exponential.

An alternative in studying a production flow control problem with the aid of the
maximum principle is to reduce it to a two-point boundary-value problem for
ordinary differential equations. Then, standard methods as, for example, the
shooting can be applied to solve this problem (Khmelnitsky and Kogan, 1994).
However, as is the case with classical combinatorial techniques, such methods can
realistically handle problems with only few machines.

The present paper suggests an approach that can take advantage of both the
analytical characteristics obtained of the maximum principle and the numerical
accuracy of the combinatorics. In this approach, shooting becomes more efficient,
and our algorithm is able to cope with sizable number of machines and products, in
two typical production environments: parallel and serial manufacturing systems.

2. Problem formulations

We consider a set of product types h ju 5 1, . . . , Jj and a set of machines hmum 5

1, . . . , Mj capable of processing those product types. Every machine m is character-
ized by its fixed capacity P for processing product type j units per time unit. Amj

control variable p (t) is introduced to model the fact that, at any point of time t,mj

machine m is either processing job j with constant production rate P or it is idle:mj

P if machine m is processing job j at time tmjp (t) 5 (1)Hmj 0, otherwise .

In this section we present continuous-time scheduling formulations which are more
general for the dynamic problems under consideration. In the subsequent sections,
these formulations are transformed into the conventional discrete forms for which
our algorithm will be applied. We present formulations for parallel and serial
production systems separately.

2.1. PARALLEL PRODUCTION SYSTEM

To formalize a parallel production system, we introduce inventory level X (t) ofj

product type j at time t, as the flow of this product type through the parallel
machines. More exactly, the rate of change in the inventory level X (t) is thej
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difference between the total production rate of machines currently producing j and
the current demand for j:

0~X (t) 5O p (t) 2 d (t) , X (0) 5 X , j 5 1, . . . , J , (2)j m mj j j j

where d (t) is the number of units of product type j per time unit required at momentj
0t (demand rate) and X is the initial inventory level of product type j.j

Note, that in this formulation, classical time parameters such as processing times
and due dates are stated in more general notion of rates. To obtain classical
formulations of scheduling problems, the differential equation (2) is to be discret-
ized, i.e., to be replaced with its difference form while demands are set to zero along
the overall planning horizon T except the time points specified by the due dates.

0Specifically, if X 5 0 and d (t) 5 1 for t equal to the due date of product type j andj j

d (t) 5 0 otherwise, we obtain a model for preemptive scheduling of J productsj

through M parallel machines.
According to Equation (2), every machine is capable of processing several

different products simultaneously. If it is not the case, the following constraint
ensures that only one product type is processed on a machine at a time:

p (t)mj
]]O < 1 , m 5 1, . . . , M . (3)j Pmj

The objective of our problem is to minimize the following cost with respect to the
inventory levels and production rates:

T

min E O C(X (t)) 1OO S( p (t)) dt , (4)j mjS D
0 mj j

subject to constraints (1)–(3).
The cost C(X (t)) represents inventory holding costs if X (t) . 0 (surplus) andj j

backlogging costs if X (t) , 0 (shortage). If the model (1)–(4) is applied forj

preemptive scheduling, these costs become dynamic penalties for earliness and
tardiness, respectively. The second term, S( p (t)), represents the cost of producingmj

product type j on machine m. Although we consider some special forms of C(X (t))j

in Section 5, the functional form of S( p (t)) will remain arbitrary throughout themj

paper. The latter is of importance, because as is often the case in industry, the actual
cost of producing on a machine cannot be represented by a linear or convex
function. Hereafter, we shall call C(X (t)) as the inventory cost function and S( p (t))j mj

as the production cost function.

2.2. SERIAL PRODUCTION SYSTEM

To formalize the model for a serial production system, we have to take into account
intermediate buffers for every product type. The difference of parallel and serial
production systems is illustrated in Figure 1. The inventory or buffer level X (t) ofmj

product type j at time t is also related to machines m by which product type j has
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Figure 1. Parallel (a) and serial (b) production systems.

been processed. As a result, the inventory flow of a product type through an
intermediate buffer is determined by the difference between the current production
rates of two consecutive machines that process product type j:

~X (t) 5 p (t) 2 d (t) , j 5 1, . . . , J, m 5 Mmj mj j

~X (t) 5 p (t) 2 p (t) , j 5 1, . . . , J, m 5 1, . . . , M 2 1 (5)mj mj m11j

0X (0) 5 X , j 5 1, . . . , J, m 5 1, . . . , M .mj mj

Constraint (3) remains without change, but the scheduling objective in the serial
system is slightly modified to minimize work-in-process in all buffers:

T

min E OO (C(X (t)) 1 S( p (t))) dt . (6)mj mj
0 m j

3. Discrete time formulations and their complexity

To handle conventional scheduling problems in our formulations, constraints and
objective functions (1)–(6) are converted into the form of discrete times (mesh
points) t which are equally spaced throughout the planning horizon:n

t 5 0 , t 2 t 5 D( period) , n 5 0, 1, . . . , N 2 1 , t 5 T .0 n11 n N

3.1. PARALLEL PRODUCTION SYSTEM

minimize OO C(X (t )) 1OOO S( p (t )) (7)j n mj n
n n mj j

subject to

0X (t ) 2 X (t ) 5 O p (t ) 2 d (t ) D, X (t ) 5 X ,S Dj n11 j n mj n j n j 0 j
m

j 5 1, . . . , J, n 5 0, . . . , N 2 1 (8)
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p (t )mj n
]]O < 1 , m 5 1, . . . , M, n 5 0, . . . , N 2 1 . (9)Pmjj

3.2. SERIAL PRODUCTION SYSTEM

minimize OOO (C(X (t )) 1 S( p (t ))) (10)mj n mj n
n m j

subject to

X (t ) 2 X (t ) 5 ( p (t ) 2 d (t )) D ,mj n11 mj n mj n j n

m 5 M, j 5 1, . . . , J, n 5 0, . . . , N 2 1
(11)

X (t ) 2 X (t ) 5 ( p (t ) 2 p (t )) D ,mj n11 mj n mj n m11j n

m 5 1, . . . , M 2 1, j 5 1, . . . , J, n 5 0, . . . , N 2 1

p (t )mj n
]]O < 1 , m 5 1, . . . , M, n 5 0, . . . , N 2 1 . (12)Pmjj

The scheduling problems (7)–(9) and (10)–(12) are NP-hard if we consider the
manufacturing system in which machines have different capability. Since the proof
is similar for both parallel and serial systems, it is presented here by reducing
problem T3P to scheduling of only a parallel manufacturing system (SPM) with
inventory cost function C(X (t)) 5 kc uX (t)u if X (t) , 0 and C(X (t)) 5 c uX (t)uj j j j j j j

otherwise. T3P is a variant of the well-known NP-complete problem 3P (3-
partition). The proof of T3P NP-hardness is quite technical and, therefore, relegated
to the appendix.

3.2.1. T3P (triple 3-partition)
1 1Instance: A finite set A of 9p elements, a bound B [ Z and a size s(a) [ Z for

each a [ A, such that each s(a) satisfies B /4 , s(a) , B /2, such that o s(a) 5a[A

3pB and such that, for each a [ A, there are two other elements a9, a0 [ A for which
s(a) 5 s(a9) 5 s(a0).
Question: Can A be partitioned into 3p disjoint sets S , S , . . . , S , such that1 2 3p

o s(a) 5 B for j 5 1, 2, . . . , 3p. (Note, that each S contains exactly threea[S jj

elements.)

THEOREM 1. SPM is NP-hard.
Proof. In order to reduce T3P to SPM, we consider the following instance of

SPM corresponding to a given instance of T3P, where we assume without loss of
generality that: A 5 ha , a , . . . , a , . . . , a j and s(a ) 5 s(a ) 5 s(a ) 51 2 3p 9p m m13p m16p

1P , m 5 1, 2, . . . , 3p, where P [ Z (positive integers).m m
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Instance of SPM: There are M 5 3p machines and J 5 3p jobs (i.e., M 5 J holds).
Production rate P of machine m for processing job j is defined by:mj

P 5 P , m 5 1, . . . , M (P is independent of j) .mj m mj

We consider discrete time t 5 t 5 0, 1, 2, . . . , n 5 0, . . . , N (D 5 1) and considern

that machine m can produce P number of products of job j in each unit timem

interval. The demand of job j is set to:

B, if t 5 3
d (t) 5Ht 0, otherwise .

We set constant k of cost function C(X (t)) 5 kc uX (t)u for X (t) , 0 large enough.j j j j

Then, it is not difficult to see that the schedule of completing all jobs before its
deadline t 5 3 is better than any other schedule that processes some jobs after t 5 3.
Indeed, if we assume

uX (t)u , t < 3j
C(X (t)) 5Hj kuX (t)u , t . 3 ,j

the total cost of any schedule that completes all jobs before their deadline t 5 3 is

OO C(X (t)) 5 O P (2 1 1) 5 3 O P 5 3pB .S Dj m m
m mt j

If there is any job that is processed after the deadline, then the cost is at least k.
Therefore, if we set k . 3pB, then a schedule is optimal if and only if there is no job
processed after the deadline.

Now we claim that the above instance of SPM has a schedule that completes all
jobs before their deadline t 5 3, if and only if the given instance of T3P has a
solution. It is immediate to see that SPM is NP-hard if this claim holds.

First, assuming that there is a schedule that processes all jobs before their
deadline, we show that there is a solution to T3P. Let job j be processed at machine
j , j and j at time intervals [0, 1], [1, 2] and [2, 3], respectively. Then, since job j1 2 3

meets its deadline, we have

P 1 P 1 P > B .j j j1 2 3

Since this holds for all j 5 1, 2, . . . , 3p, and it is assumed 3 o P 5 3pB, the abovem m

must hold by equality:

P 1 P 1 P 5 B, for all j .j j j1 2 3

Therefore, this gives a solution to T3P.
To prove the converse, assume that there is a solution (S , S . . . , S ) to T3P. If1 2 3p

S 5 (P 1 P 1 P ), where 1 < j , j , j < 3p, we consider the schedule thatj j j j 1 2 31 2 3

assigns job j to machines j , j , j for the three time intervals in some order. We1 2 3

have to show that this can actually define a schedule by appropriately ordering
j , j , j for each job j (corresponding to time intervals [0, 1], [1, 2], [2, 3]), so that1 2 3
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each machine m processes exactly one job at each time interval and no job is
processed on different machines at the same time interval. This is accomplished by
constructing a schedule for intervals [0, 1], [1, 2], [2, 3], separately in this order. For
interval [0, 1], we construct the bipartite graph G 5 (V , V , E) as follows:1 1 2

V 5 h1, 2 . . . , Mj , V 5 h1, 2 . . . , Mj1 2

(m, j) [ E ⇔ P [ S .m j

Also, we consider the weight w(m, j) for (m, j) [ E as the number of occurrences
P in S (recall that the same P may appear more than once in S ). Then Gm j m j 1

satisfies:

O w(m, j) 5 3 for m 5 1, 2, . . . , M
j u(m, j )[E

O w(m, j) 5 3 for j 5 1, 2, . . . , M .
m u(m, j )[E

Let Z(m) 5 h j [V u (m, j) [ Ej. Then for any subset U #V we have:2 1

U U< Z(m) > uU u (13)
m[U

because

O w(m, j) 5 O O w(m, j) 5 3uU u
m[Um[U,(m, j )[E j u(m, j )[E

5 O w(m, j) < 3uZ(U )u ,
j[Z(U ),(m, j )[E,m[U

where Z(U ) 5 < Z(m) (the inequality holds becausem[U

O w(m, j) < O w(m, j) 5 3
(m, j )[E,m[U (m, j )[E

for all j). The relation (13) is known as the complete marriage condition (Ahuja et
al., 1993) and tells that graph G has a complete matching M # E, i.e., uM u 5 M1 1 1

and, for each m [V there is exactly one (m, j) [ M , and, for each j [V , there is1 1 2

exactly one (m, j) [ M . We consider that this matching M defines the schedule for1 1

time interval [0, 1], i.e., assigns job j to machine m in time interval [0, 1] if and only
if (m, j) [ M .1

For time interval [1, 2], we first delete from each S the element P chosen byj m

(m, j) [ M . For the resulting S , S , . . . , S , we construct bipartite graph G 51 1 2 M 2

(V , V , E). This G satisfies:1 2 2

O w(m, j) 5 2 for m 5 1, 2, . . . , M
j u(m, j )[E

O w(m, j) 5 2 for j 5 1, 2, . . . , M .
m u(m, j )[E



278 KONSTANTIN KOGAN AND TOSHIHIDE IBARAKI

Hence, by similar argument, we can show that (13) holds for G , and there is a2

complete matching M # E. Then define the schedule for time interval [1, 2] by this2

M .2

Finally, for the last time interval [2, 3], the argument is similar, except that

O w(m, j) 5 2 for m 5 1, 2, . . . , M
j u(m, j )[E

O w(m, j) 5 1 for j 5 1, 2, . . . , M
m u(m, j )[E

holds in this case.
This completes the proof for the converse direction, and hence the proof of the

claim. h

4. Necessary optimality conditions

Although the maximum principle is equally stated for both continuous and discrete
time systems, the analytical investigation of their behavior is naturally carried out
for the general, continuous-time formulations, first, and then is transformed to
discrete time formulations by time decomposition technique.

Both problems (1)–(6) are stated in the continuous-time canonical form of the
optimal control; i.e., to optimize the objective presented as an integral of the system
variables under the differential equations for continuous state variables X (t) /X (t)j mj

with initial boundary conditions, and the constraints for measurable bounded control
variables p (t). The maximum principle applied to such a system asserts that theremj

exist left-continuous functions of bounded variation (dual variables) c (t) /c (t) soj mj

that the following dual differential equations and transversality conditions hold
(stated separately for parallel and serial production systems).

4.1. PARALLEL PRODUCTION SYSTEM

­C(X (t))j~ ]]]c (t) 5 , c (T ) 5 0 , j 5 1, . . . , J . (14)j j­Xj

4.2. SERIAL PRODUCTION SYSTEM

­C(X (t))mj~ ]]]c (t) 5 , c (T ) 5 0 , j 5 1, . . . , J , m 5 1, . . . , M . (15)mj mj­Xmj

The maximum principle says that the optimal control strategy is achieved by
maximizing the following function H(t), called Hamiltonian, under constraints (1)
and (3).
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4.3. PARALLEL PRODUCTION SYSTEM

H(t) 5 2 O C(X (t)) 2OO S( p (t)) 1O c (t) O p (t) 2 d (t) . (16)S Dj mj j mj j
m mj j j

4.4. SERIAL PRODUCTION SYSTEM

M21

H(t) 5 2 OO (C(X (t)) 1 S( p (t))) 1 O O c (t)( p (t) 2 p (t))mj mj mj mj m11j
m j m51 j

1O c (t)( p (t) 2 d (t)) . (17)Mj Mj j
j

LEMMA 1. Given the problems for the parallel production system (1)–(4), and
(1), (3), (5), (6) for the serial production system, optimal production rate p (t)mj

satisfies the following conditions (necessary condition for optimality) described in
three types of regimes via the dual variables c (t) and c (t).j mj

(i) PRODUCTION REGIME

Parallel production system

p (t) 5 P , p (t) 5 0 ,mj mj mj 9

if P c (t) 2 S(P ) . 0 and P c (t) 2 S(P ) . P c (t) 2 S(P ),mj j mj mj j mj mj 9 j 9 mj 9

; j9 ± j, ;m .

Serial production system

p (t) 5 P , p (t) 5 0 ,mj mj mj 9

if P (c (t) 2 c (t)) 2 S(P ) . 0 andmj mj m21j mj

P (c (t) 2 c (t)) 2 S(P ) . P (c (t) 2 c (t)) 2 S(P ),mj mj m21j mj mj 9 mj 9 m21j 9 mj 9

; j9 ± j, ;m ± 1 ;

P c (t) 2 S(P ) . 0 and P c (t) 2 S(P ) . P c (t) 2 S(P ),mj mj mj mj mj mj mj 9 mj 9 mj 9

; j9 ± j, m 5 1 .

(ii) NO-PRODUCTION REGIME

Parallel production system

p (t) 5 0 ,mj

if P c (t) 2 S(P ) , 0 ; j, m .mj j mj

Serial production system

p (t) 5 0, if P (c (t) 2 c (t)) 2 S(P ) , 0 ; j, m ± 1 ;mj mj mj m21j mj

P c (t) 2 S(P ) , 0 ; j, m 5 1 .mj mj mj
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(iii) SINGULAR REGIMES

Parallel production system

p (t) [ h0, P j, p (t) 5 0 ,mj mj mj 0

if P c (t) 2 S(P ) 5 0 and P c (t) 2 S(P ) , 0, ;m, ; j0 ± j.mj j mj mj j 0 mj 0

p (t) [ h0, P j, p (t) [ h0, P j, p (t) 5 0 ,mj mj mj 9 mj 9 mj 0

if P c (t) 2 S(P ) 5 P c (t) 2 S(P ) . P c (t) 2 S(P ) ,mj j mj mj 9 j 9 mj 9 mj 0 j 0 mj 0

;m, ; j9 ± j0 ± j .

Serial production system

p (t) [ h0, P j, p (t) 5 0 ,mj mj mj 0

if P (c (t) 2 c (t)) 2 S(P ) 5 0 and P (t) 2 c (t)) 2 S(P ) , 0 ,mj mj m21j mj mj 0 m21j 0 mj 0

;m ± 1, ; j0 ± j ;

P c (t) 2 S(P ) 5 0, and P c (t) 2 S(P ) , 0 , m 5 1, ; j0 ± j .mj mj mj mj 0 mj 0 mj 0

p (t) [ h0, P j, p (t) [ h0, P j, p (t) 5 0 ,mj mj mj 9 mj 9 mj 0

if P (c (t) 2 c (t)) 2 S(P ) 5 P (c (t) 2 c (t)) 2 S(P )mj mj m21j mj mj 9 mj 9 m21j 9 mj 9

. P (c (t) 2 c (t)) 2 S(P ) ,mj 0 mj 0 m21j 0 mj 0

;m ± 1, ; j9 ± j0 ± j ;

P c (t) 2 S(P ) 5 P c (t) 2 S(P ) . P c (t) 2 S(P ) ,mj mj mj mj 9 mj 9 mj 9 mj 0 mj 0 mj 0

m 5 1, ; j9 ± j0 ± j .

Proof. Since there is no constraint that relates production rates of different
machines, maximization of the Hamiltonian is separated to individual machines:

Parallel production system

H (t) 5O [c (t)p (t) 2 S( p (t)] , m 5 1, . . . , M . (18)m j mj mj
j

Serial production system

H (t) 5O [c (t)p (t) 2 S( p (t))] , m 5 1 ;m mj mj mj
j

(19)
H (t) 5O [(c (t) 2 c (t))p (t) 2 S( p (t))] , m 5 2, 3, . . . , M .m mj m21j mj mj

j

The maximum principle implies that the optimal controls p (t) are obtained bymj

maximizing the Hamiltonians (18) and (19) at every point of time t. Since at every
point of time the dual variables c (t) /c (t) are constants and every machine isj mj

allowed to produce only one product type at a time (constraint (3)), the maximum of
the Hamiltonian (18) /(19) is defined by J comparisons of its values. These values
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are calculated by setting production of machine m on every product type j, i.e., the
corresponding control variable is set to its maximal value, while for all the other
product types the machine controls are set at zero. If the maximal value of the
Hamiltonian found on all J control combinations is unique and positive we have
determined an optimal production regime, in case it is negative there will be no
production. Finally, if the maximum is either zero or not unique, singular regimes
with uncertain controls appear on the optimal trajectory as stated in this lemma. h

Note, that the singular regimes (iii) represent the points of time where it is
optimal for a machine to produce either a number of products simultaneously with a
given rate or with much lesser rate than given. The former models a situation when
there is a number of urgent orders that demand high inventories thereby causing
machine chattering (chattering regime). The latter (maximum of the Hamiltonian
equals to zero) models a situation when there are either no orders except a low
demand for only one product or a number of orders, but they are insignificant in
comparison to the system capacity (workless regime). Both regimes require exact
equalities of the Hamiltonian maximum involving different production rates and
different types of cost functions and, therefore, are very unlikely to occur.

If singular regimes can be avoided everywhere or almost everywhere on the
optimal trajectory, then Lemma 1 along with equations (2), (14) and (5), (15) give
two two-point boundary-value problems for the optimality of the two corresponding
dynamic scheduling problems for parallel and serial production systems. Such
two-point boundary-value problems are commonly solved by guessing initial values
for the dual variables, integrating both primal and dual systems of differential
equations in the same direction (from left to right), and then comparing the obtained
and given terminal values for the dual variables to correct the guess. Evidently, this
shooting is of exponential nature and applicable only to very small manufacturing
systems. In what follows, by a special choice of the inventory cost functions, we
derive a well-tractable case for both production systems.

5. Production systems with special inventory costs

In this section we specialize the inventory cost function as follows:

c uX (t)u, for X (t) > 0j j j
C(X (t)) 5 (20)Hj kc uX (t)u, for X (t) , 0 ,j j j

c uX (t)u, for X (t) > 0mj mj mj
C(X (t)) 5 (21)Hmj kc uX (t)u, for X (t) , 0 ,mj mj mj

where k is a positive integer number. This cost C(X) was selected for proving
NP-hardness of our problems in Theorem 1 and it is illustrated in Figure 2. For this
cost function we show that the dual variables c (t) and c (t) have finite upper andj mj
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Figure 2. Specialized inventory cost function.

lower bounds for their initial values c (0) and c (0) respectively (Lemma 2).j mj

Moreover, it will be shown in the next section, that for the discrete-time models
with the specialized inventory cost function, the set of values, c (0) and c (0) canj mj

take on, is also bounded (Lemma 3).

LEMMA 2. Consider the dual problems, i.e., maximizing the Hamiltonian (16)
under (1), (3), (14) ( for the parallel production system) and maximizing the
Hamiltonian (17) under (1), (3), (15) ( for the serial production system). If there
exists a t [ [0, T ] such that X (t) ± 0, X (t) ± 0, for all t [ [t, T ], then c (0) andj mj j

c (0) are bounded as follows:mj

2c T < c (0) < kc T and 2c T < c (0) < kc T . (22)j j j mj mj mj

Proof. Let us consider the dual differential equations (15) for the serial
production system. Substituting derivatives of the cost function (21) (which exist
over the interval [t, T ]) into equations (15), we find:

T

c (t) 5 c (T ) 2E c dt, if X (t) . 0 , for all t [ [t, T ]mj mj mj mj
t

T

c (t) 5 c (T ) 1E kc dt, if X (t) , 0 , for all t [ [t, T ] . (23)mj mj mj mj
t

Taking into account the terminal boundary condition of Equation (15), and
considering two extreme cases, namely, inventory values are either only positive or
only negative along the planning horizon (i.e., only one product from several
demanded is produced along the entire planning horizon) we immediately obtain
inequality (22) for the initial values of the serial system dual variables.

Similarly we can obtain inequality (22) for the parallel production system. h

6. Complexity to solve discrete-time models

To further clarify the choice of the inventory related cost functions, we return to the
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discrete formulation of the problems presented in Section 3, and calculate values of
the dual variables from the corresponding dual difference equations.

LEMMA 3. Given dual problems (1), (3), (14), (16) ( for the parallel production
system) and (1), (3), (15), (17) ( for the serial production system) with inventory
cost functions (19) and (20), respectively (but the production cost functions
S( p (t)) in (16) and (17) are still arbitrary), ifmj

X (t ) ± 0 , X (t ) ± 0 , for n 5 0, 1, . . . , N 2 1 , (24)j n mj n

then

2c ND < c (0) 5 r c D < kc ND andj j j j j

2c ND < c (0) 5 r c D < kc ND (25)mj mj mj mj mj

hold for some integers r , rj mj

r , r [ h2N, 2N 1 1, 2N 1 2, . . . , 0, 1, 2, . . . , kN 2 2, kN 2 1, kNj,j mj

respectively.

Proof. Since for the discrete problem formulations (7) and (10), the dual
equations (14) and (15) take also difference forms (Bryson and Ho, 1969),
Equations (22) in Lemma 2 for the serial production system are transformed as
follows:

c (t ) 5 c (t ) 2 c D , if X (t ) . 0mj n mj n11 mj mj n
(26)

c (t ) 5 c (t ) 1 kc D , if X (t ) , 0,mj n mj n11 mj mj n

while the terminal boundary conditions for the dual variables remain the same:

c (t ) 5 c (T ) 5 0 .mj N mj

Next, by starting from the terminal boundary conditions, considering the two
extreme cases presented in Lemma 2 (i.e., X (t ) are either always positive ormj n

always negative along the planning horizon) and calculating recursively by
Equations (26) all values of the dual variables we obtain bounds for c (0) stated inmj

condition (25) for the descrete problem formulations. Moreover, from the described
recursive procedure it immediately follows that initial values of the dual variables
(as well as evidently any non-terminal their values) can take on only multiples of
c D no matter whether X (t ) change their sign at any points t , n 5 0, 1, . . . ,N 2 1mj mj n n

of the planning horizon or not. This completes the proof of condition (25) for the
serial production system.

The equations for the dual parallel production system become

c (t ) 5 c (t ) 2 c D , when X (t ) . 0j n j n11 j j n
(27)

c (t ) 5 c (t ) 1 kc D , when X (t ) , 0j n j n11 j j n

The proof is similar to the case of serial production. h
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From Lemma 3 follows that there are generally

N(k11)11 N(k11)11J and (JM)

possible initial values of the dual variables in parallel and serial systems, respective-
ly. However, not all combinations appear to be legitimate when demands meet some
realistic restrictions. The next lemma elaborates on this by considering a point tL

with 0 < L < N 2 2, at which the first demand for some product is set in the system.
The possibility, L 5 N 2 1 is excluded from consideration because, in this case no
tardiness is possible. To present such a situation, additional inventory constraint
must be introduced into the models to prohibit the tardiness. This, in turn, change
the terminal boundary constraints for the corresponding dual variables and, thus,
makes all proven lemmas illegitimate.

LEMMA 4. Given primal problems (7)–(9) and (10)–(12) in parallel and serial
production systems with inventory cost functions (20) and (21) (but, production cost
function S( p (t)) remains arbitrary), respectively, if X (t ) ± 0, X (t ) ± 0, hold formj j n mj n

all n 5 0, 1, . . . , N 2 1, and X (t ) > j, X (t ) > j hold for an infinitesimal j . 0,j 0 mj 0

and L is such that for all j, d (t ) 5 0 for n 5 0, 1, . . . , L, and d (t )D . X (t ) forj n j L j 0

some j, then the initial values of dual variables c (0) and c (0) of the corre-j mj

sponding dual problems are multiples of c D and c D, respectively:j mj

c D(1 2 L) < c (0) < (k(N 2 L) 2 L)c Dj j j
(28)

c D(1 2 L) < c (0) < (k(N 2 L) 2 L)c D .mj mj mj

Proof. To prove that c (0) and c (0) are multiples of c D and c D, respectively,j mj j mj

it is sufficient to note that all conditions of Lemma 3 satisfied in Lemma 4.
To prove the bounds (28), consider a product type j for which a demand is set at

t in the parallel production system. Since the initial inventory level of everyL

product is given as a positive value and the demand for the product j starts not
earlier than at point t , the corresponding dual variable can only grow linearly overL

the interval [0, t ] (see dual equations (27) in Lemma 3). As a result, at point t itL L

can become equal at least to its minimal positive value, i.e., to c D.j

This is due to the fact that any non-positive value of a dual variable means no
production (see regime (ii), Lemma 1), i.e., at point t such that d (t )D . X (t ), theL j L j 0

demand will make inventories negative, and hence, result in decrease of the dual
variable after point t up to the end of the planning horizon, which implies that thisL

dual variable will remain negative and the required zero terminal condition c (t ) 5j N

0 will never be realized.
At the same time, a positive value of the dual variable (at least the minimal one)

at point t makes possible production (see regime (i), Lemma 1), at the subsequentL

period despite negative inventories, which decrease the dual variable to a negative
value. This production can be sufficient to compensate the negative inventories at
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points succeeding t and, thus, increase back the dual variable at the minimal rate cL j

to meet the terminal condition c (t ) 5 0.j N

On the other hand, the maximal positive value that the dual variable is able to
attain by the linear growth is kc D(N 2 L), which is due to the maximal rate kcj j

available for getting into the same zero terminal condition in the N 2 L remaining
periods.

Thus, we obtain simple equations for determining the upper bound for the initial
values of the dual variables:

c (0) 1 LcD 5 kc D(N 2 L) ;j j

as well as the equations for their lower bound:

c (0) 1 Lc D 5 c D .j j j

Condition (28) for the parallel production systems immediately results from these
equations. These are evidently the worst case estimation, because not all product
demands necessarily start at L.

The equations for determining the upper and lower bounds for the dual serial
production system become

c (0) 1 Lc D 5 kc D(N 2 L) ;mj mj mj

c (0) 1 Lc D 5 c D .mj mj mj

The proof is similar to the case of parallel production. h

As we have seen so far, the maximum principle delivers necessary optimality
conditions for both continuous-time and discrete formulations of the parallel and
serial production systems. In the following theorem, sufficient conditions are given
for only discrete formulations, which make use of initial values of dual variables
predetermined in Lemmas 3 or 4.

Theorem 2. Consider primal problems (7)–(9) ( for the parallel production system)
and (10)–(12) ( for the serial production system) with inventory cost functions (19)
and (20) and arbitrary production cost function S( p (t)), respectively.mj

Parallel production system
If inequality (24) is satisfied and the following condition holds:

r P c 2 S(P ) ± r P c 2 S(P ) ,j mj j mj j 9 mj 9 j 9 mj 9

for all t , r [ h2N, 2N 1 1, . . . , 21, 0, 1, . . . , kN 2 1, kNjj j 9

and all m, j ± j9 ; (29)

r P c 2 S(P ) ± 0, for all r [ h2N, 2N 1 1, . . . , 21, 0, 1, . . . , kN 2 1, kNjj mj j mj j

and all m, j,
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then the global optimal solution X (t ) and c (t ) is obtained as:j n j n

arg min OO c uX (t )u 1OOO S( p (t )) , (30)j j n mj n
n n mhc (0)j j jj

where X (t ) are the solutions of Equations (7) and c (t ) are the solutions ofj n j n

Equations (27) both computed from left to right with the controls p (t ) determinedmj n

by Lemma 1. The initial values of the dual variables c (0) are chosen within thej

bounds (25) so that the terminal condition c (T ) 5 0 is met.j

Serial production system

If inequality (24) is satisfied and the following condition holds:

r P c 2 S(P ) ± r P c 2 S(P ) ,j mj j mj j 9 mj 9 j 9 mj 9

for all r , r [ h2N, 2N 1 1, . . . , 21, 0, 1, . . . , kN 2 1, kNj ,j j 9

m 5 1 and all j ± j9 ;

9P (r c 2 r9c ) 2 S(P ) ± P (r c 2 r c ) 2 S(P ) ,mj j mj j m21j mj mj 9 j 9 mj 9 j 9 m21j 9 mj 9

9for all r , r9, r , r [ h2N, 2N 1 1, . . . , 21, 0, 1, . . . , kN 2 1, kNjj j j 9 j 9

and all m ± 1, j ± j9 ; (31)

P (r c 2 r9c ) 2 S(P ) ± 0 ,mj j mj j m21j mj

for all r , r9 [ h2N, 2N 1 1, . . . , 21, 0, 1, . . . , kN 2 1, kNj and all j, m ± 1 ;j j

r P c 2 S(P ) ± 0, for all r [ h2N, 2N 1 1, . . . , 21, 0, 1, . . . , kN 2 1, kNj ,j mj j mj j

m 5 1 and all j ,

then the global optimal solution X (t ) and c (t ) is obtained as:mj n mj n

arg min OOO (c uX (t )u 1 S( p (t))) , (32)mj mj n mj
n mhc (0)j jmj

where X (t ) are the solutions of Equations (10) and c (t ) are the solutions ofmj n mj n

Equations (26), both computed from left to right with the controls p (t )mj n

determined by Lemma 1. The initial values of the dual variables c (0) are chosenmj

within the bounds (25) so that the terminal condition c (T ) 5 0 is met.mj

Proof. Let us consider only the parallel production system. It follows from the
previous discussion that an optimal solution of the problem (7)–(9) satisfies the
system of the primal (7) and dual (27) equations as well as the terminal boundary
condition c (T ) 5 0, where the control variables p (t) are determined by Lemma 1.j mj

This is however only a necessary condition, since the maximum principle can
guarantee only local optimality.

In case there is a number of local optimal solutions, the solution minimizing the
objective (30) among them is the global optimal solution. Moreover, if inventories
are not zero at the mesh points of time as stated in condition (24), it is sufficient to
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solve the primal and dual equations for the fixed number of initial boundary values
determined by (25) (see Lemma 3).

However, in order for the controls to be unambiguous when computing this
solution and, thus, the proof complete, there must not be singular regimes (iii) (see
Lemma 1) on the optimal trajectory. By replacing the dual variables in conditions
(iii) of Lemma 1 with their values determined in Lemma 3, the remaining condition
(29) which excludes the singular regimes (iii) is readily obtained. h

REMARK. Theorem 2 presents a straightforward scheduling algorithm of
N(k11)11O(J ) (for the serial production system J is replaced with multiplication JM

N(k11)11to yield O((JM) )) iterations corresponding to all initial values of c (t) andj

c (t) within the bounds (25). According to Lemma 1, every iteration requiresmj

O(NMJ) time. The number of iterations can be reduced if demands are concentrated
at N 2 L > 2 points from the end of the planning horizon and there exists product j
such that d (t )D exceeds the initial inventories: d (t )D . X (t ) > j (j . 0 is anj L j L j 0

infinitesimal). By Lemma 4, the worst case estimate of the number of iterations, in
k(N2L ) k(N2L )this case becomes O(J ) and O((MJ) ) for the parallel and serial systems,

k(N2L )11respectively and the overall complexity of the algorithm becomes O(NMJ )
k(N2L )11for the parallel production system and O(N(MJ) ) for the serial production

system, respectively. Thus, for example, cubic running time is expected for a special
case with L 5 N 2 2 and k 5 1. Although the general complexity is not polynomial

MNin N, it still compares favorably with the time complexity O((J 1 1) ) of a naive
enumeration algorithm of all schedules. This improvement becomes possible
because our approach enumerates only the initial values of dual variables.

7. Algorithm and illustrative example

As noted in the remark to Theorem 2, the following algorithm (described for both
parallel and serial production systems) can obtain optimal solutions:

Step 1. Select initial values of the dual variables from the set defined by condition
(25) or (28) of Lemma 3 or Lemma 4, respectively. If all possible values have been
selected then STOP, the procedure is completed. The best of computed solutions is
the optimal one.

Step 2. For each set of initial values selected at Step 1, calculate simultaneously
from left to right the primal equations (7), (10) and dual equations (27), (26) for the
parallel and serial systems, respectively. For every machine m and product j, the
respective term of the Hamiltonian is calculated at every time point t as follows:n

H (t ) 5 P c (t ) 2 S(P ) (for the parallel production system)mj n mj j n mj

H (t ) 5 P (c (t ) 2 c (t )) 2 S(P ) (for the serial production system) .mj n mj mj n m21j n mj
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Then, the optimal control p (t ) for machine m on product j at time t is setmj n n

according to Lemma 1 so that the Hamiltonian is maximized:

P , if j 5arg max H (t ) and H (t ) . 0 ;mj mj n mj n
jp (t ) 5mj n H

0 , otherwise .

Step 3. Calculate objective function (9) for the parallel system and (12) for the
serial system for the obtained inventory levels.

Step 4. If the objective improves, then save the result along with the obtained
terminal values for the dual variables. Return to Step 1.

If no singular regimes are found on the optimal trajectory, the obtained solution
provides the exact optimal solution; otherwise at points where singularity occurs the
algorithm replaces such regimes with either production or no-production regimes
(Step 2). As a result, terminal values of the dual variables will not be satisfied (equal
to zero) for the obtained optimal solution, that indicates that the approximation was
made.

It is important to note, that conditions (29) and (31) actually show that singular
regimes are avoided everywhere or almost everywhere if inventory and production
costs for different products are distinct and not multiple to each other. Such
conditions would be satisfied quite naturally for real manufacturing cases. At the
same time, the penalties for underproduction (tardiness) of a product are often
multiples of those for overproduction (earliness) in real production systems.
Furthermore, the exact zero inventories (prohibited by conditions (24)) are also
unrealistic to happen, because zero values in Equations (7) and (10) can only be
provided by controls compensating exactly all current demands. This clearly would
be possible if the controls were continuously adjustable (i.e., 0 < p (t ) < P ) tomj n mj

changing in time demands, rather than binary p (t ) [ h0, P j as stated in ourmj n mj

problem formulations.
To illustrate the above algorithm, we consider three-machine, four-product,

eleven-time points scheduling problem in a parallel production system with general
type of demands, quadratic production cost and period D 5 1:

10 4

minimize O O C(X (t)S Dj
t50 j51

2 2 2 2
1 2.6p (t) 1 0.1p (t) 1 2.5p (t) 1 2.9p (t)11 12 13 14

2 2 2 2
1 2.3p (t) 1 2.1p (t) 1 2.7p (t) 1 2.6p (t)21 22 23 24

2 2 2 2
1 1.0p (t) 1 2.3p (t) 1 2.6p (t) 1 1.7p (t))31 32 33 34

subject to
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Figure 3. Production rates and inventory levels for the calculated example.
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uX (t)u , if X (t) . 0j j
C(X (t)) 5 , j 5 0, 1, . . . , 10 ; X (t) ± 0 ;Hj j2uX (t) , if X (t) , 0j j

3

X (t 1 1) 5 X (t) 1 O p (t) 2 d (t) , X (0) 5 0.0001 ,j j mj j j
m51

t 5 0, 1, . . . , 9 ; j 5 1, . . . , 4 ;

p (t) p (t) p (t) p (t)11 12 13 14]] ]] ]] ]]1 1 1 < 1 , t 5 0, 1, . . . , 10 ;3.0 6.5 1.0 3.3

p (t) p (t) p (t) p (t)21 22 23 24]] ]] ]] ]]1 1 1 < 1 , t 5 0, 1, . . . , 10 ;3.4 3.0 3.5 5.0

p (t) p (t) p (t) p (t)31 32 33 34]] ]] ]] ]]1 1 1 < 1 , t 5 0, 1, . . . , 10 ;5.8 2.8 1.2 3.0

p (t) 5 0, 3.0; p (t) 5 0, 65; p (t) 5 0, 1.0; p (t) 5 0, 3.3; p (t) 5 0, 3.4;11 12 13 14 21

p (t) 5 0, 3.0;22

p (t) 5 0, 35; p (t) 5 0, 5.0; p (t) 5 0, 5.8; p (t) 5 0, 2.8; p (t) 5 0, 12;23 24 31 32 33

p (t) 5 0, 3.0.34

The optimal solution depicted in Figure 3 is obtained for the following initial
values of the dual variables:

c (0) 5 213, c (0) 5 25, c (0) 5 14, c (0) 5 29 ,1 2 3 4

while all terminal boundary conditions are satisfied:

c (10) 5 c (10) 5 c (10) 5 c (10) 5 0 .1 2 3 4

6. Conclusions

Two dynamic scheduling models for minimizing inventory and production costs in
parallel and serial production systems are studied with the aid of the maximum
principle. As a result, optimal production regimes are derived, and a special form of
the inventory cost is found, which allows the stated problems to be replaced with a
two-point boundary-value problem. Consequently, we suggest an algorithm, which
solves this problem in time much faster than naive enumeration of all machines. The
algorithm can be applied to systems of reasonable sizes (e.g., dozens of machines,
products and time periods) with arbitrary production cost functions. In addition,
conditions for the cost relationships, inventory levels and demand profiles are
derived for the purpose of improving the computational power of the algorithm and
providing a number of the polynomially solvable cases.
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Appendix

THE NP-HARDNESS OF T3P

It does not seem to be easy to show the NP-completeness of T3P by modifying the
proof for 3P only slightly. Recall that the proof for 3P was done in the book
Garey–Johnson (1991) by the following sequence of reductions:

3SAT → 3DM → 4P → 3P ,

where 3SAT 5 3-satisfiability, 3DM 5 3-dimensional matching, 4P 5 4-partition,
3P 5 3-partition. By checking the proof, it is easy to recognize that this sequence
can be changed to:

3SAT → X3C → 4P → 3P ,

where X3C 5 exact cover by 3-sets, which contains 3DM as a special case.
We prove the NP-completeness of T3P by the sequence:

3SAT → XT3C → T4P → T3P ,

where XT3C 5 exact triple cover by 3-sets is defined as follows.

XT3C
Instance: A finite set X with uXu 5 3g and a collection C of three element subsets of
X such that each c [ C appears three times in C.

Question: Does C contain an exact triple cover for X, that is, a subcollection C9 # C
such that every element of X occurs in exactly three members of C9.

REMARK. Let C0 be the collection obtained from C by picking only one c [ C
from the three members c in C. Then XT3C has a solution if X3C for C0 has a
solution, since the solution that repeats three times the solution for X3C is a solution
to XT3C. However, the converse may not be true, and necessitates an independent
proof for the reduction.

In the following, we prove only the part of

3SAT → XT3C ,

because the rest of the reduction sequence XT3C → T4P → T3P can be done in the
same manner as X3C → 4P → 3P.

LEMMA. XT3C is NP-complete.

Proof. We reduce 3SAT to XT3C by modifying the original argument of
3SAT → X3C (pp. 50–53 of Garey–Johnson (1991)).



292 KONSTANTIN KOGAN AND TOSHIHIDE IBARAKI

3SAT
Instance: Collection D 5 hd , d , . . . , d j of clauses on a finite set U of variables1 2 J

such that ud u 5 3 for 1 < j < J.j

Question: Is there a truth assignment for U that satisfies all clauses in D?
For each variable u [ U, we introduce the following 13m elements in X of XT3C:

] ] ]u [ j], u [ j], u [ j], u [ j], u [ j], u [ j], u [ j], a [ j], b [ j], a [ j], b [ j], a [ j],0 1 1 2 2 3 3 1 1 2 2 3

b [ j] , 1, 2, . . . , J .3

Example for the case of J 5 2 is presented in Figure A.1.
Then, for these elements, the following 3-sets in collection C are prepared. Note

t f othat each member c [ j], c [ j] and c [ j] appears three times in C:uk uk uk

tc [ j] 5 hu [ j], a [ j], b [ j]j , j 5 1, 2, . . . , J , k 5 1, 2, 3 ;uk k k k

f ]c [ j] 5 hu [ j], b [ j], a [ j]j , j 5 1, 2, . . . , J , k 5 1, 2, 3uk k k k11

(k 1 1 is taken to be module 3) ;
o ]c [ j] 5 hu [ j], u [ j], u [ j]j , j 5 1, 2, . . . , J , k 5 1, 2, 3 .uk 0 k k

First, consider how to cover a [ j] and b [ j] for all k and j, such that each element isk k

covered exactly three times by the above three sets. For this, there are four patterns
shown in Figure A.2.

Figure A.1. Example for the case of J 5 2.
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Figure A.2. Four patterns to cover a [ j] and b [ j] for all k, j.k k

Note, that the numbers attached to 3-sets denote how many times the sets appear
in the solution.

oThen we cover every u [ j] three times by choosing c [ j] (k 5 1, 2, 3) appro-0 uk
o o opriately (i.e., three 3-sets from nine members c [ j], c [ j], c [ j], where eachu1 u2 u3

]member appears three times), while covering other elements u [ j], u [ j], a [ j],k k k

b [ j] at most three times, respectively. It is not difficult to see that such covering isk

possible only if the covering pattern for a [ j] and b [ j] is either (c) or (d) (seek k
o o oFigure A.2), and all three members c [ j], c [ j], c [ j] are chosen exactly once,u1 u2 u3

respectively. We interpret that pattern (c) assigns variable u true value (i.e., u 5 1)
and pattern (d) assigns false value (i.e., u 5 0). In case of (c), elements u [ j],k

]j 5 1, 3, . . . , J, k 5 1, 2, 3 are covered only twice, and u [ j] are all covered threek
]times, while in case of (d), u [ j] are all covered three times and u [ j] are coveredk k

two times.
The rest of the construction proceeds analogously to the original proof for X3C

(3DM, precisely speaking).
For each d [ D and k [ h1, 2, 3j we prepare the following 3-sets:j

hu [ j], s [ j], s [ j]j, if u [ dk 1 2 j

] ]hu [ j], s [ j], s [ j]j, if u [ d .k 1 2 j

Note that there are exactly three sets of this type because ud u 5 3, and that each suchj

3-set appears three times in C, by the definition of XT3C.
Assume that the instance of 3SAT has a solution. To cover s [ j], s [ j] three times1 2

for each j, we can choose each of

hu [ j], s [ j], s [ j]j, k 5 1, 2, 3k 1 2

exactly once respectively, for one literal u [ d which was assigned true valuej
](pattern (d)). After choosing these, we note that elements u [ j] (or u [ j]),k k

corresponding to the above choice, are covered three times.
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]To cover three times all the element u [ j] and u [ j] not chosen above, we thenk k

prepare the garbage collection component. This part is almost the same as the
original proof of Garey–Johnson, and is omitted.

After this construction, we can show by following the arguments of the original
proof, that the instance of 3SAT has a solution if and only if the corresponding
instance of XT3C has a solution.

This completes the proof for 3SAT → XT3C. h

References

Ahuja, R.K., Magnati, T.L. and Orlin, J.B. (1993), Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, New Jersey.

Brucker, P. (1995), Scheduling Algorithms, Springer, Berlin.
Bryson, A.E. and Ho, Y.-C. (1969), Applied Optimal Control, Ginn and Company, Waltham.
Crowston, W.P. and Wagner, M.H. (1973), Dynamic lot-size models for multistage assembly

systems, Management Science 20: 13–21.
Garey, M.R. and Johnson, D.S. (1991), Computers and Intractability, W.H. Freeman and

Company, New York.
Karmarkar, U., Kekre, S. and Kekre, S. (1987), The dynamic lot-sizing problem with startup and

reservation costs, Operations Research 35: 389–398.
Khmelnitsky, E. and Kogan, K. (1994), Necessary optimality conditions for a generalized problem

of production scheduling, Optimal Control Applications & Methods 15: 215–222.
Khmelnitsky, E., Kogan, K. and Maimon, O. (1995), A Maximum principle based method for

scheduling in a flexible manufacturing system, Discrete Events Dynamic Systems 5: 343–355.
Kimenia, J.G. and Gershwin, S.B. (1983), An algorithm for the computer control of a flexible

manufacturing system, IEE Transactions 15(4): 353–362.
Kogan, K., Shtub, A. and Levit, V. (1997), DGAP – the dynamic generalized assignment problem,

Annals of Operations Research 69: 227–229.
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1993), Sequencing and

scheduling: algorithms and complexity, in Graves, S., Rinnooy Kan, A. and Zipkin, P. (eds.),
Logistics of Production and Inventory, Handbooks in Operations Research and Management
Science, 4, North-Holland, New York.

Pinedo, M. (1995), Scheduling: Theory, Algorithms, and Systems, Prentice-Hall, New Jersey.
Sousa, J.B. and Pereira, F.L. (1992), A hierarchical framework for scheduling and planning

discrete events in manufacturing systems, Proc. Third Int. Conf. on Computer Integrated
Manufacturing, IEEE, Troy, NY, May 1992, 278–286.


